A SELECT statement can consist of the following basic clauses.
SELECT
INTO
FROM
JOIN
WHERE
GROUP BY
HAVING
UNION
ORDER BY
LIMIT
The following syntax diagram outlines the syntax supported by the SQL engine of the provider:
Return all columns:
Rename a column:
Cast a column's data as a different data type:
Search data:
Return the number of items matching the query criteria:
Return the number of unique items matching the query criteria:
Return the unique items matching the query criteria:
Summarize data:
See Aggregate Functions below for details.
Retrieve data from multiple tables.
See JOIN Queries below for details.
Sort a result set in ascending order:
Restrict a result set to the specified number of rows:
Parameterize a query to pass in inputs at execution time. This enables you to create prepared statements and mitigate SQL injection attacks.
Returns the number of rows matching the query criteria.
Returns the number of distinct, non-null field values matching the query criteria.
Returns the average of the column values.
Returns the minimum column value.
Returns the maximum column value.
Returns the total sum of the column values.
The Provider for Azure Table Storage supports standard SQL joins like the following examples.
An inner join selects only rows from both tables that match the join condition:
A left join selects all rows in the FROM table and only matching rows in the JOIN table:
The following date literal functions can be used to filter date fields using relative intervals. Note that while the <, >, and = operators are supported for these functions, <= and >= are not.
The current day.
The previous day.
The following day.
Every day in the preceding week.
Every day in the current week.
Every day in the following week.
Also available:
L_LAST/L_THIS/L_NEXT MONTH
L_LAST/L_THIS/L_NEXT QUARTER
L_LAST/L_THIS/L_NEXT YEAR
The previous n days, excluding the current day.
The following n days, including the current day.
Also available:
L_LAST/L_NEXT_90_DAYS
Every day in every week, starting n weeks before current week, and ending in the previous week.
Every day in every week, starting the following week, and ending n weeks in the future.
Also available:
L_LAST/L_NEXT_N_MONTHS(n)
L_LAST/L_NEXT_N_QUARTERS(n)
L_LAST/L_NEXT_N_YEARS(n)
A SELECT statement can consist of the following basic clauses.
SELECT
INTO
FROM
JOIN
WHERE
GROUP BY
HAVING
UNION
ORDER BY
LIMIT
The following syntax diagram outlines the syntax supported by the SQL engine of the provider:
Return all columns:
Rename a column:
Cast a column's data as a different data type:
Search data:
Return the number of items matching the query criteria:
Return the number of unique items matching the query criteria:
Return the unique items matching the query criteria:
Summarize data:
See Aggregate Functions below for details.
Retrieve data from multiple tables.
See JOIN Queries below for details.
Sort a result set in ascending order:
Restrict a result set to the specified number of rows:
Parameterize a query to pass in inputs at execution time. This enables you to create prepared statements and mitigate SQL injection attacks.
Returns the number of rows matching the query criteria.
Returns the number of distinct, non-null field values matching the query criteria.
Returns the average of the column values.
Returns the minimum column value.
Returns the maximum column value.
Returns the total sum of the column values.
The Provider for Wasabi supports standard SQL joins like the following examples.
An inner join selects only rows from both tables that match the join condition:
A left join selects all rows in the FROM table and only matching rows in the JOIN table:
The following date literal functions can be used to filter date fields using relative intervals. Note that while the <, >, and = operators are supported for these functions, <= and >= are not.
The current day.
The previous day.
The following day.
Every day in the preceding week.
Every day in the current week.
Every day in the following week.
Also available:
L_LAST/L_THIS/L_NEXT MONTH
L_LAST/L_THIS/L_NEXT QUARTER
L_LAST/L_THIS/L_NEXT YEAR
The previous n days, excluding the current day.
The following n days, including the current day.
Also available:
L_LAST/L_NEXT_90_DAYS
Every day in every week, starting n weeks before current week, and ending in the previous week.
Every day in every week, starting the following week, and ending n weeks in the future.
Also available:
L_LAST/L_NEXT_N_MONTHS(n)
L_LAST/L_NEXT_N_QUARTERS(n)
L_LAST/L_NEXT_N_YEARS(n)
SELECT
{
[ TOP
<numeric_literal> | DISTINCT
]
{
*
| {
<expression> [ [ AS
] <column_reference> ]
| { <table_name> | <correlation_name> } .*
} [ , ... ]
}
[ INTO
csv:// [ filename= ] <file_path> [ ;delimiter=tab ] ]
{
FROM
<table_reference> [ [ AS
] <identifier> ]
} [ , ... ]
[ [
INNER
| { { LEFT
| RIGHT
| FULL
} [ OUTER
] }
] JOIN
<table_reference> [ ON
<search_condition> ] [ [ AS
] <identifier> ]
] [ ... ]
[ WHERE
<search_condition> ]
[ GROUP
BY
<column_reference> [ , ... ]
[ HAVING
<search_condition> ]
[ UNION
[ ALL
] <select_statement> ]
[
ORDER
BY
<column_reference> [ ASC
| DESC
] [ NULLS FIRST
| NULLS LAST
]
]
[
LIMIT <expression>
[
{ OFFSET | , }
<expression>
]
]
}
<expression> ::=
| <column_reference>
| @ <parameter>
| ?
| COUNT( * | { [ DISTINCT
] <expression> } )
| { AVG
| MAX
| MIN
| SUM
| COUNT
} ( <expression> )
| NULLIF
( <expression> , <expression> )
| COALESCE
( <expression> , ... )
| CASE
<expression>
WHEN
{ <expression> | <search_condition> } THEN
{ <expression> | NULL
} [ ... ]
[ ELSE
{ <expression> | NULL
} ]
END
| <literal>
| <sql_function>
<search_condition> ::=
{
<expression> { = | > | < | >= | <= | <> | != | LIKE
| NOT
LIKE
| IN
| NOT
IN
| IS
NULL
| IS
NOT
NULL
| AND
| OR
| CONTAINS
| BETWEEN
} [ <expression> ]
} [ { AND
| OR
} ... ]
SELECT * FROM NorthwindProducts
SELECT [Name] AS MY_Name FROM NorthwindProducts
SELECT CAST(Price AS VARCHAR) AS Str_Price FROM NorthwindProducts
SELECT * FROM NorthwindProducts WHERE Industry = 'Floppy Disks'
SELECT COUNT(*) AS MyCount FROM NorthwindProducts
SELECT COUNT(DISTINCT Name) FROM NorthwindProducts
SELECT DISTINCT Name FROM NorthwindProducts
SELECT Name, MAX(Price) FROM NorthwindProducts GROUP BY Name
SELECT Customers.ContactName, Orders.OrderDate FROM Customers, Orders WHERE Customers.CustomerId=Orders.CustomerId
SELECT PartitionKey, Name FROM NorthwindProducts ORDER BY Name ASC
SELECT PartitionKey, Name FROM NorthwindProducts LIMIT 10
SELECT * FROM NorthwindProducts WHERE Industry = @param
SELECT COUNT(*) FROM NorthwindProducts WHERE Industry = 'Floppy Disks'
SELECT COUNT(DISTINCT PartitionKey) AS DistinctValues FROM NorthwindProducts WHERE Industry = 'Floppy Disks'
SELECT Name, AVG(Price) FROM NorthwindProducts WHERE Industry = 'Floppy Disks'
GROUP BY Name
SELECT MIN(Price), Name FROM NorthwindProducts WHERE Industry = 'Floppy Disks'
GROUP BY Name
SELECT Name, MAX(Price) FROM NorthwindProducts WHERE Industry = 'Floppy Disks'
GROUP BY Name
SELECT SUM(Price) FROM NorthwindProducts WHERE Industry = 'Floppy Disks'
SELECT Customers.ContactName, Orders.OrderDate FROM Customers, Orders WHERE Customers.CustomerId=Orders.CustomerId
SELECT Customers.ContactName, Orders.OrderDate FROM Customers LEFT OUTER JOIN Orders ON Customers.CustomerId=Orders.CustomerId
SELECT * FROM MyTable WHERE MyDateField = L_TODAY()
SELECT * FROM MyTable WHERE MyDateField = L_YESTERDAY()
SELECT * FROM MyTable WHERE MyDateField = L_TOMORROW()
SELECT * FROM MyTable WHERE MyDateField = L_LAST_WEEK()
SELECT * FROM MyTable WHERE MyDateField = L_THIS_WEEK()
SELECT * FROM MyTable WHERE MyDateField = L_NEXT_WEEK()
SELECT * FROM MyTable WHERE MyDateField = L_LAST_N_DAYS(3)
SELECT * FROM MyTable WHERE MyDateField = L_NEXT_N_DAYS(3)
SELECT * FROM MyTable WHERE MyDateField = L_LAST_N_WEEKS(3)
SELECT * FROM MyTable WHERE MyDateField = L_NEXT_N_WEEKS(3)
SELECT { [ TOP <numeric_literal> | DISTINCT ] { * | { <expression> [ [ AS ] <column_reference> ] | { <table_name> | <correlation_name> } .* } [ , ... ] } [ INTO csv:// [ filename= ] <file_path> [ ;delimiter=tab ] ] { FROM <table_reference> [ [ AS ] <identifier> ] } [ , ... ] [ [ INNER | { { LEFT | RIGHT | FULL } [ OUTER ] } ] JOIN <table_reference> [ ON <search_condition> ] [ [ AS ] <identifier> ] ] [ ... ] [ WHERE <search_condition> ] [ GROUP BY <column_reference> [ , ... ] [ HAVING <search_condition> ] [ UNION [ ALL ] <select_statement> ] [ ORDER BY <column_reference> [ ASC | DESC ] [ NULLS FIRST | NULLS LAST ] ] [ LIMIT <expression> [ { OFFSET | , } <expression> ] ] }
<expression> ::= | <column_reference> | @ <parameter> | ? | COUNT( * | { [ DISTINCT ] <expression> } ) | { AVG | MAX | MIN | SUM | COUNT } ( <expression> ) | NULLIF ( <expression> , <expression> ) | COALESCE ( <expression> , ... ) | CASE <expression> WHEN { <expression> | <search_condition> } THEN { <expression> | NULL } [ ... ] [ ELSE { <expression> | NULL } ] END | <literal> | <sql_function>
<search_condition> ::= { <expression> { = | > | < | >= | <= | <> | != | LIKE | NOT LIKE | IN | NOT IN | IS NULL | IS NOT NULL | AND | OR | CONTAINS | BETWEEN } [ <expression> ] } [ { AND | OR } ... ] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A SELECT statement can consist of the following basic clauses.
SELECT
INTO
FROM
JOIN
WHERE
GROUP BY
HAVING
UNION
ORDER BY
LIMIT
The following syntax diagram outlines the syntax supported by the SQL engine of the provider:
Return all columns:
Rename a column:
Cast a column's data as a different data type:
Search data:
Return the number of items matching the query criteria:
Return the number of unique items matching the query criteria:
Return the unique items matching the query criteria:
Summarize data:
See Aggregate Functions below for details.
Retrieve data from multiple tables.
See JOIN Queries below for details.
Sort a result set in ascending order:
Restrict a result set to the specified number of rows:
Parameterize a query to pass in inputs at execution time. This enables you to create prepared statements and mitigate SQL injection attacks.
Returns the number of rows matching the query criteria.
Returns the number of distinct, non-null field values matching the query criteria.
Returns the average of the column values.
Returns the minimum column value.
Returns the maximum column value.
Returns the total sum of the column values.
The Provider for Amazon S3 supports standard SQL joins like the following examples.
An inner join selects only rows from both tables that match the join condition:
A left join selects all rows in the FROM table and only matching rows in the JOIN table:
The following date literal functions can be used to filter date fields using relative intervals. Note that while the <, >, and = operators are supported for these functions, <= and >= are not.
The current day.
The previous day.
The following day.
Every day in the preceding week.
Every day in the current week.
Every day in the following week.
Also available:
L_LAST/L_THIS/L_NEXT MONTH
L_LAST/L_THIS/L_NEXT QUARTER
L_LAST/L_THIS/L_NEXT YEAR
The previous n days, excluding the current day.
The following n days, including the current day.
Also available:
L_LAST/L_NEXT_90_DAYS
Every day in every week, starting n weeks before current week, and ending in the previous week.
Every day in every week, starting the following week, and ending n weeks in the future.
Also available:
L_LAST/L_NEXT_N_MONTHS(n)
L_LAST/L_NEXT_N_QUARTERS(n)
L_LAST/L_NEXT_N_YEARS(n)
A SELECT statement can consist of the following basic clauses.
SELECT
INTO
FROM
JOIN
WHERE
GROUP BY
HAVING
UNION
ORDER BY
LIMIT
The following syntax diagram outlines the syntax supported by the SQL engine of the provider:
Return all columns:
Rename a column:
Cast a column's data as a different data type:
Search data:
Return the number of items matching the query criteria:
Return the number of unique items matching the query criteria:
Return the unique items matching the query criteria:
Summarize data:
See Aggregate Functions below for details.
Retrieve data from multiple tables.
See JOIN Queries below for details.
Sort a result set in ascending order:
Restrict a result set to the specified number of rows:
Parameterize a query to pass in inputs at execution time. This enables you to create prepared statements and mitigate SQL injection attacks.
Returns the number of rows matching the query criteria.
Returns the number of distinct, non-null field values matching the query criteria.
Returns the average of the column values.
Returns the minimum column value.
Returns the maximum column value.
Returns the total sum of the column values.
The Provider for IBM Cloud Object Storage supports standard SQL joins like the following examples.
An inner join selects only rows from both tables that match the join condition:
A left join selects all rows in the FROM table and only matching rows in the JOIN table:
The following date literal functions can be used to filter date fields using relative intervals. Note that while the <, >, and = operators are supported for these functions, <= and >= are not.
The current day.
The previous day.
The following day.
Every day in the preceding week.
Every day in the current week.
Every day in the following week.
Also available:
L_LAST/L_THIS/L_NEXT MONTH
L_LAST/L_THIS/L_NEXT QUARTER
L_LAST/L_THIS/L_NEXT YEAR
The previous n days, excluding the current day.
The following n days, including the current day.
Also available:
L_LAST/L_NEXT_90_DAYS
Every day in every week, starting n weeks before current week, and ending in the previous week.
Every day in every week, starting the following week, and ending n weeks in the future.
Also available:
L_LAST/L_NEXT_N_MONTHS(n)
L_LAST/L_NEXT_N_QUARTERS(n)
L_LAST/L_NEXT_N_YEARS(n)
SELECT
{
[ TOP
<numeric_literal> | DISTINCT
]
{
*
| {
<expression> [ [ AS
] <column_reference> ]
| { <table_name> | <correlation_name> } .*
} [ , ... ]
}
[ INTO
csv:// [ filename= ] <file_path> [ ;delimiter=tab ] ]
{
FROM
<table_reference> [ [ AS
] <identifier> ]
} [ , ... ]
[ [
INNER
| { { LEFT
| RIGHT
| FULL
} [ OUTER
] }
] JOIN
<table_reference> [ ON
<search_condition> ] [ [ AS
] <identifier> ]
] [ ... ]
[ WHERE
<search_condition> ]
[ GROUP
BY
<column_reference> [ , ... ]
[ HAVING
<search_condition> ]
[ UNION
[ ALL
] <select_statement> ]
[
ORDER
BY
<column_reference> [ ASC
| DESC
] [ NULLS FIRST
| NULLS LAST
]
]
[
LIMIT <expression>
[
{ OFFSET | , }
<expression>
]
]
}
<expression> ::=
| <column_reference>
| @ <parameter>
| ?
| COUNT( * | { [ DISTINCT
] <expression> } )
| { AVG
| MAX
| MIN
| SUM
| COUNT
} ( <expression> )
| NULLIF
( <expression> , <expression> )
| COALESCE
( <expression> , ... )
| CASE
<expression>
WHEN
{ <expression> | <search_condition> } THEN
{ <expression> | NULL
} [ ... ]
[ ELSE
{ <expression> | NULL
} ]
END
| <literal>
| <sql_function>
<search_condition> ::=
{
<expression> { = | > | < | >= | <= | <> | != | LIKE
| NOT
LIKE
| IN
| NOT
IN
| IS
NULL
| IS
NOT
NULL
| AND
| OR
| CONTAINS
| BETWEEN
} [ <expression> ]
} [ { AND
| OR
} ... ]
SELECT * FROM Buckets
SELECT [OwnerId] AS MY_OwnerId FROM Buckets
SELECT CAST(AnnualRevenue AS VARCHAR) AS Str_AnnualRevenue FROM Buckets
SELECT * FROM Buckets WHERE Name = 'TestBucket'
SELECT COUNT(*) AS MyCount FROM Buckets
SELECT COUNT(DISTINCT OwnerId) FROM Buckets
SELECT DISTINCT OwnerId FROM Buckets
SELECT OwnerId, MAX(AnnualRevenue) FROM Buckets GROUP BY OwnerId
SELECT Customers.ContactName, Orders.OrderDate FROM Customers, Orders WHERE Customers.CustomerId=Orders.CustomerId
SELECT Name, OwnerId FROM Buckets ORDER BY OwnerId ASC
SELECT Name, OwnerId FROM Buckets LIMIT 10
SELECT * FROM Buckets WHERE Name = @param
SELECT COUNT(*) FROM Buckets WHERE Name = 'TestBucket'
SELECT COUNT(DISTINCT Name) AS DistinctValues FROM Buckets WHERE Name = 'TestBucket'
SELECT OwnerId, AVG(AnnualRevenue) FROM Buckets WHERE Name = 'TestBucket'
GROUP BY OwnerId
SELECT MIN(AnnualRevenue), OwnerId FROM Buckets WHERE Name = 'TestBucket'
GROUP BY OwnerId
SELECT OwnerId, MAX(AnnualRevenue) FROM Buckets WHERE Name = 'TestBucket'
GROUP BY OwnerId
SELECT SUM(AnnualRevenue) FROM Buckets WHERE Name = 'TestBucket'
SELECT Customers.ContactName, Orders.OrderDate FROM Customers, Orders WHERE Customers.CustomerId=Orders.CustomerId
SELECT Customers.ContactName, Orders.OrderDate FROM Customers LEFT OUTER JOIN Orders ON Customers.CustomerId=Orders.CustomerId
SELECT * FROM MyTable WHERE MyDateField = L_TODAY()
SELECT * FROM MyTable WHERE MyDateField = L_YESTERDAY()
SELECT * FROM MyTable WHERE MyDateField = L_TOMORROW()
SELECT * FROM MyTable WHERE MyDateField = L_LAST_WEEK()
SELECT * FROM MyTable WHERE MyDateField = L_THIS_WEEK()
SELECT * FROM MyTable WHERE MyDateField = L_NEXT_WEEK()
SELECT * FROM MyTable WHERE MyDateField = L_LAST_N_DAYS(3)
SELECT * FROM MyTable WHERE MyDateField = L_NEXT_N_DAYS(3)
SELECT * FROM MyTable WHERE MyDateField = L_LAST_N_WEEKS(3)
SELECT * FROM MyTable WHERE MyDateField = L_NEXT_N_WEEKS(3)
SELECT
{
[ TOP
<numeric_literal> | DISTINCT
]
{
*
| {
<expression> [ [ AS
] <column_reference> ]
| { <table_name> | <correlation_name> } .*
} [ , ... ]
}
[ INTO
csv:// [ filename= ] <file_path> [ ;delimiter=tab ] ]
{
FROM
<table_reference> [ [ AS
] <identifier> ]
} [ , ... ]
[ [
INNER
| { { LEFT
| RIGHT
| FULL
} [ OUTER
] }
] JOIN
<table_reference> [ ON
<search_condition> ] [ [ AS
] <identifier> ]
] [ ... ]
[ WHERE
<search_condition> ]
[ GROUP
BY
<column_reference> [ , ... ]
[ HAVING
<search_condition> ]
[ UNION
[ ALL
] <select_statement> ]
[
ORDER
BY
<column_reference> [ ASC
| DESC
] [ NULLS FIRST
| NULLS LAST
]
]
[
LIMIT <expression>
[
{ OFFSET | , }
<expression>
]
]
} | SCOPE_IDENTITY()
<expression> ::=
| <column_reference>
| @ <parameter>
| ?
| COUNT( * | { [ DISTINCT
] <expression> } )
| { AVG
| MAX
| MIN
| SUM
| COUNT
} ( <expression> )
| NULLIF
( <expression> , <expression> )
| COALESCE
( <expression> , ... )
| CASE
<expression>
WHEN
{ <expression> | <search_condition> } THEN
{ <expression> | NULL
} [ ... ]
[ ELSE
{ <expression> | NULL
} ]
END
| <literal>
| <sql_function>
<search_condition> ::=
{
<expression> { = | > | < | >= | <= | <> | != | LIKE
| NOT
LIKE
| IN
| NOT
IN
| IS
NULL
| IS
NOT
NULL
| AND
| OR
| CONTAINS
| BETWEEN
} [ <expression> ]
} [ { AND
| OR
} ... ]
SELECT * FROM Objects
SELECT [Etag] AS MY_Etag FROM Objects
SELECT CAST(AnnualRevenue AS VARCHAR) AS Str_AnnualRevenue FROM Objects
SELECT * FROM Objects WHERE Bucket = 'testBucket'
SELECT COUNT(*) AS MyCount FROM Objects
SELECT COUNT(DISTINCT Etag) FROM Objects
SELECT DISTINCT Etag FROM Objects
SELECT Etag, MAX(AnnualRevenue) FROM Objects GROUP BY Etag
SELECT Customers.ContactName, Orders.OrderDate FROM Customers, Orders WHERE Customers.CustomerId=Orders.CustomerId
SELECT Key, Etag FROM Objects ORDER BY Etag ASC
SELECT Key, Etag FROM Objects LIMIT 10
SELECT * FROM Objects WHERE Bucket = @param
SELECT COUNT(*) FROM Objects WHERE Bucket = 'testBucket'
SELECT COUNT(DISTINCT Key) AS DistinctValues FROM Objects WHERE Bucket = 'testBucket'
SELECT Etag, AVG(AnnualRevenue) FROM Objects WHERE Bucket = 'testBucket'
GROUP BY Etag
SELECT MIN(AnnualRevenue), Etag FROM Objects WHERE Bucket = 'testBucket'
GROUP BY Etag
SELECT Etag, MAX(AnnualRevenue) FROM Objects WHERE Bucket = 'testBucket'
GROUP BY Etag
SELECT SUM(AnnualRevenue) FROM Objects WHERE Bucket = 'testBucket'
SELECT Customers.ContactName, Orders.OrderDate FROM Customers, Orders WHERE Customers.CustomerId=Orders.CustomerId
SELECT Customers.ContactName, Orders.OrderDate FROM Customers LEFT OUTER JOIN Orders ON Customers.CustomerId=Orders.CustomerId
SELECT * FROM MyTable WHERE MyDateField = L_TODAY()
SELECT * FROM MyTable WHERE MyDateField = L_YESTERDAY()
SELECT * FROM MyTable WHERE MyDateField = L_TOMORROW()
SELECT * FROM MyTable WHERE MyDateField = L_LAST_WEEK()
SELECT * FROM MyTable WHERE MyDateField = L_THIS_WEEK()
SELECT * FROM MyTable WHERE MyDateField = L_NEXT_WEEK()
SELECT * FROM MyTable WHERE MyDateField = L_LAST_N_DAYS(3)
SELECT * FROM MyTable WHERE MyDateField = L_NEXT_N_DAYS(3)
SELECT * FROM MyTable WHERE MyDateField = L_LAST_N_WEEKS(3)
SELECT * FROM MyTable WHERE MyDateField = L_NEXT_N_WEEKS(3)